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Abstract—Since its inception, Rowhammer exploits have
rapidly evolved into increasingly sophisticated threats com-
promising data integrity and the control flow integrity of
victim processes. Nevertheless, it remains a challenge for
an attacker to identify vulnerable targets (i.e., Rowhammer
gadgets), understand the outcome of the attempted fault, and
formulate an attack that yields useful results.

In this paper, we present a new type of Rowhammer
gadget, called a LeapFrog gadget, which, when present in the
victim code, allows an adversary to subvert code execution
to bypass a critical piece of code (e.g., authentication check
logic, encryption rounds, padding in security protocols). The
LeapFrog gadget manifests when the victim code stores the
Program Counter (PC) value in the user or kernel stack
(e.g., a return address during a function call) which, when
tampered with, repositions the return address to a location
that bypasses a security-critical code pattern.

This research also presents a systematic process to iden-
tify LeapFrog gadgets. This methodology enables the auto-
mated detection of susceptible targets and the determination
of optimal attack parameters. We first show the attack on
a decision tree algorithm to show the potential implications.
Secondly, we employ the attack on OpenSSL to bypass the
encryption and reveal the plaintext. We then use our tools to
scan the Open Quantum Safe library and report on the num-
ber of LeapFrog gadgets in the code. Lastly, we demonstrate
this new attack vector through a practical demonstration in a
client/server TLS handshake scenario, successfully inducing
an instruction skip in a client application. Our findings
extend the impact of Rowhammer attacks on control flow
and contribute to developing more robust defenses against
these increasingly sophisticated threats.

1. Introduction

The miniaturization of DRAM technology has inad-
vertently increased the susceptibility to bit flips and relia-
bility issues. To mitigate data corruption, DRAM rows are
refreshed at regular intervals, typically every 64 millisec-
onds. However, Kim et al. [30] discovered that rapid and
repeated access to adjacent rows could accelerate charge
leakage, leading to bit flips before the scheduled refresh,
a phenomenon known as the Rowhammer effect [30].
Expanding on this, Seaborn et al. [53] demonstrated an
even more efficient method known as the double-sided
Rowhammer, which exacerbates the issue.

Further developments in exploiting the Rowhammer
vulnerability have been numerous. Gruss et al. [22]
achieved root privileges by flipping opcodes in the sudo
binary using a single-location hammering technique. Fur-
thermore, Gruss et al. [23] and Ridder et al. [18] demon-
strated the feasibility of launching Rowhammer attacks
remotely via JavaScript. Tatar et al. [57] and Lip et al.
[36] extended the reach of Rowhammer to network-based
attacks. Its applicability has also been demonstrated in
cloud environments [65], [14] and on hybrid FPGA-CPU
platforms [64]. Importantly, Kwong et al. [34] revealed
that Rowhammer poses not only an integrity threat but
also compromises confidentiality.

Efforts to detect [27], [13], [69], [26], [45], [24],
[5], [17] and neutralize [23], [61], [9] Rowhammer at-
tacks have been substantial. However, Gruss et al. [22]
demonstrated the ineffectiveness of these countermea-
sures. Moreover, Cojocar et al. [15] questioned the se-
curity of ECC as a countermeasure. The Target Row Re-
fresh (TRR) hardware countermeasure was recently also
circumvented, as shown by Frigo et al. [21] and further
exploited by Ridder et al. [18] to target DDR4 chips with
TRR. In particular, a recent study by Kogler et al. [32]
highlighted the feasibility of hammering beyond adjacent
locations to bypass TRR defenses.

The software exploits enabled by Rowhammer were
further studied in recent research. Tobah et al. [58] intro-
duced the notion of Rowhammer gadgets and a special-
ized attack. Specifically, if a victim code is designed to
return benign data to an unprivileged user, and uses nested
pointer dereferences, Rowhammer can be used to flip these
pointers thereby gaining arbitrary read access in the vic-
tim’s address space. Adiletta et al. [2] demonstrated that
even internal CPU elements such as register values, which
are occasionally saved to the stack, can be vulnerable to
Rowhammer when they are temporarily stored in the stack
and flushed to memory. Upon reloading, these corrupted
values are returned to the registers, potentially leading
to the execution of faulty stack variables and security
breaches.

The threat of physical fault injection attacks has
been acknowledged in the cryptographic community for
some time [8]. For instance, OpenSSL incorporated error
checks in CRT-based exponentiation early on to combat
Bellcore attacks [8]. However, fault injection techniques
have successfully compromised Elliptic Curve Parameters
in the OpenSSL library [56]. Similarly, Rowhammer-
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induced fault attacks in WolfSSL, leading to ECDSA key
exposure, were revealed in [43], [19]. The vulnerabilities
occurred during the TLS handshake process, involving
the signing operation with private ECC keys. WolfSSL
responded by introducing WOLF_SSL_CHECK_SIG_-
FAULTS and WOLFSSL_BLIND_PRIVATE_KEY, a se-
ries of checks during the signing stages to detect data
tampering [40], [41].

A recent work by Adiletta et al. [2] targeted sen-
sitive stack variables via Rowhammer threatening data
integrity. In this paper, we instead target the control-flow-
integrity (CFI) and subvert the execution flow for mali-
cious ends, e.g. to bypass sensitive sections of code user
authentication and data encryption. For this, we introduce
LEAPFROG a new Rowhammer attack vector that targets
the PC when stored in the stack during function calls
and context switches. Not all PC manipulations will yield
useful results, as some jumps within the code will result
in errors, like segfaults, or simply will not bypass the
intended code logic. To explore the massive attack surface,
we introduce an automated tool that dynamically analyzes
code to detect this type of Rowhammer gadget [58].

1.1. Our contributions

We introduce a novel approach for identifying
LEAPFROG Rowhammer gadgets capable of corrupting
the PC, utilizing a combination of GDB, the Intel Pintool,
and the Linux Process Interface.

Our contributions are fivefold:
1) We introduce the concept of LEAPFROG gadgets,

which allows an attacker to bypass security critical
areas of code by faulting the PC value stored in stack.

2) We introduce the first simulation tool designed
to identify LeapFrog gadgets. This tool represents
an improvement over existing methodologies [67]
by systematically analyzing binaries with our Intel
Pin-based tool called MFS and incorporating time-
domain analysis in simulations.

3) We scan the Open Quantum Safe library signature
scheme, OpenSSL encryption, and a machine learn-
ing model - and quantify the number of potential
LeapFrog gadgets present in the code.

4) We validate the feasibility of this attack in practical
scenarios by successfully bypassing a TLS handshake
in standard OpenSSL implementations.

5) We propose and evaluate countermeasures against
the LeapFrog attack, offering insights into enhanc-
ing the resilience of systems against such advanced
Rowhammer based exploits.

2. Background

Rowhammer DRAM is stored in an array architecture
of memory cells, where a capacitor and a transistor form
each cell in the array. Each cell, capable of storing a value
of either 1 or 0, is connected along word lines that extend
across the row. Additionally, bit lines intersect the word
lines perpendicularly, linking them to each cell. When
the bit lines are brought into opposition (where one goes
high and one goes low), positive feedback from a sense
amplifier sets the state of the cell to be high or low. The

sense amplifier consists of two cross-connected inverters
between the cells. For the cell to retain its state, the sense
amplifier must be disconnected [1].

The sense amplifiers must be disconnected to read the
cell, so the target word-line must be brought high. The
charge in the capacitor will bring one of the bit lines high
if the cell has a value of 1 during reading, then the sense
amplifier will be reconnected, and the row will have the
sense amplifier outputs latched [47].

The Rowhammer attack works by abusing the sense
amplifier’s ability to set the state of the cell. The capacitor
will leak voltage and must undergo a refresh of voltage
every 64 ms (or less) according to the standard JETEC
convention. Reading the cell introduces noise into the
system due to fluctuating voltages, and the noise can be
amplified by the sense amp. As semiconductor technology
improves, transistors shrink in size and the operating
voltage also shrinks. The resulting cells are then able
to operate at a higher speed, and the noise margins are
reduced. Shrinking in size increases the signal coupling
across traces and devices and magnifies crosstalk. When
combined with the lower operating voltage and sharper
edges due to higher speeds, the ratio of the crosstalk to
the supply voltage increases significantly as technology
improves making it easier for an adversary to exploit this
type of attack. These can result in errors being written to
the DRAM [1].

Instruction Skipping Instruction-skipping attacks are a
type of fault attack that targets the normal execution
flow of a program, particularly in embedded systems and
secure circuits. Historically these techniques often needed
physical access due to the timing and precision required
to skip instructions. For example, laser fault injection
has been demonstrated in inducing instruction skips in
AES (Advanced Encryption Standard) that resulted in
leaking private encryption keys [11]. In another example
[51], researchers demonstrate how electromagnetic fault
injection can effectively induce instruction skipping in the
ARMv7-M architecture, specifically targeting AES.

In terms of countermeasures for instruction skips
specifically, [42] addresses the vulnerability of embed-
ded processors to instruction skip attacks. The paper ac-
knowledges that while countermeasures based on temporal
redundancy have been proposed, they are not entirely
effective against double fault injections over extended time
intervals.

Kernel Stack vs User Stack The user stack operates in
user mode and is operated by user-level processes. Each
user process has its own stack that stores local variables,
function parameters, return addresses, and the control flow
of the program. This stack is limited in size and is specific
to the user space process, ensuring isolation and security
from other processes.

On the other hand, the kernel stack operates in kernel
mode, a privileged mode of operation for the system’s
kernel. Each thread of a process has its own kernel stack.
This stack is used when the process executes system
calls or when it is interrupted and the kernel needs to
perform operations on behalf of the process. The kernel
stack handles system-critical lower-level operations such
as interrupt handling, system call implementation, and
managing hardware interactions. It is kept separate from
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the user stack for security and stability, ensuring that user
processes cannot directly access or interfere with kernel-
level operations. Data stored in the kernel stack includes
CPU context for system calls, interrupt state information,
and other kernel-specific data, while the user stack holds
user-level process data like function calls and local vari-
ables. This separation reinforces the security and stability
of the operating system by isolating user applications from
the core kernel functions.
Program Counters Program Counters (PCs), also known
as Instruction Pointers, hold the memory address of the
next instruction to be executed by the CPU. This mecha-
nism ensures that instructions are executed in the correct
sequence. The value of the Program Counter is typically
not stored in the stack; rather, it’s stored in a dedicated
register within the CPU. During the execution of a pro-
gram, the PC is automatically incremented after each
instruction is fetched, pointing to the subsequent instruc-
tion. However, during certain operations like function calls
and interrupts, the PC value may be changed abruptly
to a new address. In such cases, the return address (the
original PC value) is often stored in the stack to enable
the program to return to the correct point in the program
after the operation is complete. For user function calls,
the PC value is pushed to the user stack, but if there is
an exception, signal handler, or system call, the PC gets
pushed to the kernel stack. This mechanism facilitates the
smooth flow of program execution.
Process Degradation Process degradation in computing
refers to the intentional slowing down of a processor to
create favorable conditions for certain types of attacks.
A notable contribution in this field, HyperDegrade [3],
combines previous approaches [4] with the use of si-
multaneous multithreading (SMT) architectures to sig-
nificantly slow down processor performance, achieving
a slowdown that is orders of magnitude greater than
previous methods. It utilizes collateral Self Modifying
Code (SMC) events to induce “machine clears”, where
the entire CPU pipeline is flushed, resulting in severe
performance penalties. This process is triggered by cache
line eviction, causing the invalidation of instructions in
the victim’s L1 instruction cache, which the CPU may
interpret as an SMC event. This mechanism amplifies the
degradation effect, as instructions are sometimes fetched
multiple times, leading to substantial slowdowns in CPU
performance. This slowdown enhances the time granu-
larity for FLUSH+RELOAD [25] attacks, enabling more
effective exploitation of side-channel vulnerabilities in
systems. The attack not only explores the implementation
of this technique but also investigates the root causes of
performance degradation, particularly focusing on cache
eviction. Their findings have substantial implications in
the realm of cryptography, as evidenced by the amplifica-
tion of the Raccoon attack [39] on TLS-DH key exchanges
and other protocols.

3. Related Work

To attack the binary during runtime, we had to over-
come timing challenges as well as different detection
problems to find vulnerable areas in the code. In [22]
researchers used mmap to map the target binary into a

vulnerable page in memory, demonstrating how memory
waylaying and memory-chasing techniques can force the
mapped binary into the target page. This attack can po-
tentially be mitigated by making the process execute only,
and thus cannot be mapped with the mmap command. In
contrast, our work can attack binaries that are unreadable
from userland and are executed only. Additionally, our
attack works on fundamentally different mechanics, so
targets not susceptible to [22] may be susceptible to ours.

Another related work [58] demonstrates that code
using nested pointer dereferences can corrupt bits in these
pointers to reveal data to an unprivileged user. They
demonstrate this vulnerability on ioctl given they can
flood the kernel heap with data by spawning processes (a
method they call “spraying”), increasing the probability
a single bit-flip will point to malicious data in the heap
that points to the location of secret data. Our work com-
pliments and improves upon this prior work by increasing
the number of vulnerable code patterns since their work
relies on the presence of specific code patterns that may
not be present in the victim code.

Lastly, [68] demonstrates a Rowhammer attack
methodology where researchers emulated Rowhammer
bitflips on targets. They introduced the idea of simulating
a flip in the EIP register value in the stack, which can
force the execution to jump from kernel code to user
code, like the ret2usr attack [33]. However, attacks that
cause privilege escalation by jumping from kernel code
to user code are mitigated by SMAP [16], which prevents
the kernel from executing userland instructions. Our attack
forces a process to jump within its own code space and
privilege space and thus is not affected by SMAP and
introduces attack surfaces on new code patterns.

4. Threat Model

Similar to other Rowhammer attacks we assume the
attacker is co-located on the same system as the victim
[30], [22], [65], [14], [23]. Co-location is a common threat
model for many micro-architectural side-channel attacks
and fault attacks [35], [31], [12], [60], [62]. We do not
assume root privilege or physical access to the machine.
We only assume that the system has TRR enabled, and
bypasses TRR with a many-sided attack [21].

5. LeapFrog Attack

LeapFrog gadgets are exploitable in scenarios where a
process undergoes a context switch or executes a function
call, leading to the storage of the PC value in either the
kernel or user stack. The ingenuity of LeapFrog gadgets
lies in their susceptibility to Rowhammer-induced bit flips
due to them being stored in DRAM, enabling an attacker
to alter the PC value subtly. This manipulation is designed
to redirect the execution flow to a different code segment,
ideally with minimal bit changes due to the blunt nature of
Rowhammer and the higher probability of finding a faulty
memory location with few or one faulty bits in the right
location. In this paper, we assume that we can successfully
find a 1-bit flip within a page that is in the right location
to fault the PC value to force the intended instruction to
skip.
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In Figure 1 the storage of the PC value occurs in the
kernel stack during the execution of wait_receive. In
this scenario, a malicious server can hold the client pro-
cess at the wait_receive function while hammering
the PC value to force the process to jump to a new location
upon returning from the function. In our assembly code
analysis in Figure 1, we observe the original PC value
is an address 0x555555555478. Through strategic bit
flips, this value can be altered to 0x555555555578,
effectively enabling an instruction skip (skipping one or
more instructions) and jumping from the function call in
wait receive directly to a later point in the execution,
bypassing the critical server authentication check. The
practicability of such attacks, however, hinges on the
feasibility of achieving the desired bit flips, a central
challenge to the effectiveness of LeapFrog gadgets in
real-world scenarios. In this scenario, flipping the PC
from 0x555555555478 to 0x555555555578 only
requires a 1-bit flip, which is a reasonable assumption
for Rowhammer.

However, tiny variations in the C code can change
the resulting assembly code significantly. For example,
consider the first approach for a TLS handshake, where the
process allocates memory for a message to be signed. The
C code and its corresponding assembly code are shown
in Listing 1. Alternatively, using a different method to
allocate memory for the message results in a variation
in the assembly code. This alternative approach and its
corresponding assembly code are presented in Listing 2.

In the source code space, the alternative
approach (Listing 2) takes 0x55555555541f -
0x555555555413 or 12 bytes of instructions, while
the original approach (Listing 1) occupies 8 bytes of
assembly instruction (this excludes the size of the last
instruction). Given the assumption that only one bit
per page can be reliably flipped, identifying useful
instruction skips that require a single bit change, as

 <main>:
... 
   0x555555555469: xor    %ecx,%ecx
   0x55555555546b: mov    $0x80,%edx
   0x555555555470: mov    %r12,%rsi
   0x555555555473: callq  <recv@plt>             
   0x555555555478: mov    %rax,%rbx              
   0x55555555547b: test   %rax,%rax
   0x55555555547e: jg     <main+208>
...
   0x555555555571: callq  <ECDSA_SIG_free@plt>
   0x555555555576: xor    %eax,%eax
   0x555555555578: callq  <auth_success>         
   0x55555555557d: jmp    <main+442>
   0x55555555557f: lea    0xb5a(%rip),%rdi
...

Figure 1: LeapFrog gadget in TLS handshake addrsrc, the
PC value that fault is injected into, is highlighted in blue .
The new value is highlighted in red . The fault is injected
during the execution of the function call highlighted in
green .

Listing 1: Combined C and Assembly code for original
memory allocation

1 // C Code
2 unsigned char message[32] = "This is a message

to be signed";
3 int ret = send(client_fd, message, sizeof(

message),0);
4
5 // Assembly Code
6 0x555555555413: movdqa 0xce5(%rip),%xmm0
7 0x55555555541b: mov $0x20,%edx

Listing 2: Combined C and Assembly code for alternative
memory allocation

1 // C Code
2 unsigned char *message;
3 message = "This is a message to be signed";
4 int ret = send(client_fd, message, sizeof(

message),0);
5
6 // Assembly Code
7 0x555555555413: lea 0xc6e(%rip),%r14
8 0x55555555541a: lea 0x60(%rsp),%r13
9 0x55555555541f: mov %r14,%rsi

illustrated in Figure 2, is crucial. This example illustrates
the challenge of manually inspecting source code to
determine the impact of tiny variations on assembly
instruction distances. Hence, profiling binaries becomes
an important tool in this context.

5.1. Offline Memory Profiling

Finding Contiguous Memory Virtual to physical address
mappings are stored in pagemap file in Linux OSs and
it requires root privileges to access these translations.
Using the SPOILER tool [28], we can reliably leak the
information about the first 8 bits in physical addresses
after the page offset bits. This allows us to find contiguous
memory chunks in physical address space. In Figure 3, the
page numbers with the peaks in the y-axis are contiguous
pages’ physical address space.

Figure 2: The best LeapFrog gadgets require a single-bit
flip, where the distance between the two lines of code is
a power of 2.
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Figure 3: Timing peaks on virtual addresses detected by
SPOILER [28] attack. Virtual addresses on the peaks are
contiguous on physical address space.

Finding Memory In the Same Banks To find phys-
ical memory pages within the same bank, we employ
techniques first described in [46]. DRAM is structured
in multiple banks that are physically isolated from each
other, so while SPOILER can give an attacker physically
contiguous chunks, the memory is distributed across mul-
tiple banks. This is a problem because hammering rows
that are not adjacent within the same bank will not result
in bit flips.

We use the row conflict side channel to find co-located
memory address accesses within the same bank. We take
measurements by iterative reading between two addresses,
and if the reading results in high latency (assuming we are
not hitting cache), it means DRAM is clearing the row
buffer and the addresses are located in the same bank.

Alternatively, if we repeatedly read from two addresses
and they are in different banks, the values will be loaded
into their respective row buffers for their respective banks,
and the reading time will have a lower latency.
Executing the Rowhammer Bit Flip in a Many-Sided
Context Despite modern mitigation techniques against
Rowhammer like Target Row Refresh (TRR), we are still
able to induce flips in DDR4 memory by using a many-
sided [21] approach.

In the final phase of our attack, the task is to induce
bit flips in the target memory location. This step marks
the culmination of the profiling and memory manipulation
processes. The challenge lies in the fact that while we can
ascertain the occurrence of bit flips in a given row (a row
that we deem “flippy”), pinpointing the exact memory bits
affected after the attack is not straightforward. This is due
to the inherent nature of Rowhammer, where the attacker
does not possess direct control over the specific memory
areas being altered.

However, the success of the attack is often evident
through observable changes in the process’ state. For in-
stance, a successful execution might manifest as an unau-
thorized bypass of security measures, or broken encryption
output. This indirect outcome serves as a confirmation of
the attack’s effectiveness. We further expand on this in
section 7.

6. Locating the PC in the Stack

To flip bits in the PC value with Address Space Layout
Randomization (ASLR) enabled, the page that contains

Figure 4: Once the fingerprint is located, there is a con-
stant offset from the fingerprint regardless of ASLR, and
this can be used for bait page profiling for the eventual
attack

Figure 5: Finding constant values in the stack to create a
fingerprint

the PC value needs to be placed into the page with the bit
that will flip during the Rowhammer attack. To do this,
we use a method similar to that proposed in [50] where
we deallocate a series of pages from the attacker process,
launch the victim process, and experimentally determine
some probability that the target data (in this case the PC)
lands in the target location (the row with the flippy bits).
We term the deallocation of pages “baiting” in this paper.

The profiling to determine the proper number of bait
pages starts by allocating pages within the attacker’s pro-
cess space, designated to be released as bait. The proce-
dure involves releasing a substantial number of bait pages,
recording their physical addresses, and then correlating
these with the physical address of the target variable in
the victim process. The number of pages consumed by the
victim process before allocating the target variable was
determined through this correlation.

In a recent work [2], the victim’s source code was
altered to assign a unique value to the target register
or stack variable, thereby making it identifiable in the
memory during the profiling stage. This method is not
possible with PC values as they are dependent on the
compiler, so we introduce a new method to determine the
number of bait pages required for the PC value.

The dynamic nature of the PC under ASLR imple-
mented in the Linux kernel necessitates a novel approach
that involves identifying invariant values within the stack
that serve as reliable fingerprints. These fingerprints are
used to determine the PC’s offset relative to these con-
stants, thereby facilitating the estimation of the required
number of bait pages for effective targeting.
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6.1. Fingerprinting the Stack

As the PC’s address and value fluctuate with each
process execution due to ASLR, our strategy leverages
the relative stability of certain stack values and correlates
an offset from those values. We first profile with ASLR
disabled, knowing the target PC value in the stack from an
assembly dump with GDB. We then determine an offset
from the fingerprint as seen in Figure 4. Then with ASLR
enabled, even with the PC value changing, the fingerprint
remains identifiable and the offset from the fingerprint re-
mains constant. The outcome is a refined understanding of
the number of bait pages required to strategically position
the PC, thus enhancing the precision of our Rowhammer
attack in an ASLR-enabled environment. Fingerprinting
only needs to be done once and is machine-independent.

The process begins by capturing snapshots of the
stack at different instances and identifying unique values
that persist across these snapshots. We implemented a
Python script to automate this analysis. The script com-
pares consecutive stack states, isolating values that remain
unchanged— these become features of our fingerprints as
seen in Figure 5. By calculating the address differences
between these consistent values and tracking their occur-
rence across multiple iterations, we build a comprehensive
profile of the stack’s layout. This profile is instrumental in
pinpointing the location of the PC relative to the identified
fingerprints and is versatile enough to be used on virtually
any binary.

7. Automatic Detection of LeapFrog Gadgets
with MFS

Based on how the LeapFrog gadgets occur in the
binary described in section 5, we develop a custom tool we
call MFS (Multidimensional Fault Simulator) that relies
on dynamic binary instrumentation and analysis. Since the
attack happens on program counters and registers, which
are invisible to high-level code, such as C/C++, it is not
possible to do a static analysis of the source code. We
put together a set of rules that enables us to collect, filter,
and pinpoint the potential LeapFrog gadgets. The overall
design is shown in Figure 6.

1 First, MFS collects the instruction traces, specif-
ically, the address of instructions executed, for different
inputs. To detect the gadgets that cause security exploits,
MFS chooses critical input pairs that cause differences in
the program’s control flow. Such inputs can be correct/in-
correct private key pairs or passphrases for authentication
programs. Together with the instruction addresses, we
collect the execution time of each function executed. Since
the return addresses of the functions with larger execution
times will stay in the memory for a longer duration, they
are potentially more viable targets.

2 MFS then computes the difference between two
instruction traces to find the instruction addresses that are
executed with correct input(s) but not executed with incor-
rect input(s). Note that this is an optional step to reduce the
complexity of the following steps, and it comes with a cost
of false negatives. Moreover, depending on the program
and type of exploit, it may not always be possible to get
multiple different traces; see section 8.2. Alternatively, the

whole instruction trace can be considered instead of only
the difference.

3 Regarding the choice of the fault model on PC
values, the probability analysis in previous work [59] is
relevant. Given a sequence of bit offsets b0, b1, ..., bk+l−1

within a memory page and assuming a defective memory
cell can flip solely in one direction, the conditional prob-
ability of identifying a compatible target page t amongst
N susceptible pages can be expressed as:

p
(
t|{bn0→1

} ∈ {0 → 1}, {bn1→0
} ∈ {1 → 0}

)
=

1−
(
1−

k−1∏
i=0

n0→1 − i

S − i
×

l−1∏
j=0

n1→0 − j

S − k − j

)N

, (1)

where n0→1 and n1→0 represent the average counts
of error-prone cells on a page that can be flipped from
0 to 1 and from 1 to 0 respectively, k and l denote the
counts of bit locations needing flips from 0 to 1 and 1
to 0 respectively, and “S” signifies the total bit count per
page.

First, we calculate the probability of finding a target
page t for each N value and three different k + l values.
Note that k+ l is the number of bit offsets within a page.
Figure 7 shows that for 1 bit per page, 2200 pages are
enough to achieve 99.99% accuracy for a DDR4 DRAM
with an average of 100 flips per page. For 2 and 3 bits
per page, the same number of pages gives 2% and 0.006%
probability, respectively.

MFS looks for address pairs that hold the following
conditions:

dHD(addriexec,addrjreturn) = 1 (2)

where addriexec is the address of the ith instruction
that is executed, addrjreturn is the return addresses of the
jth call instruction, and dHD is the Hamming distance
between two addresses. i and j are bounded by the
number of all instructions executed (n) and the number of
call instructions executed (m), respectively. Although this
operation has O(mn) complexity, it can be implemented
with bitwise xor and can be parallelized using multiple
processor cores. The condition given in Equation (2) is
determined by the Rowhammer fault model. Given that
finding a suitable memory page in memory is only real-
istic with single-bit flip fault models, MFS assumes we
can only flip a single bit. Yet, the method is generic
enough to cover other potential fault models, such as
optical fault injection or electromagnetic fault injection,
where multiple-bit flips are more likely [10]. This step
generates a list of pairs of addresses in the following
format: {< addrksrc, addr

k
dest >} where addrksrc is the

kth instruction address that MFS targets in the binary’s
execution with the input that we want to affect the control
flow of, such as an incorrect private key, and addrkdest is
the corrupted instruction address after fault injection.

4 For each address pair we get from the list generated
in the previous step, MFS starts a simulation session. MFS
executes the binary again with the incorrect input and
simulates a bit flip on the instruction address addrsrc to
make it addrdest. Certain instructions may be executed
multiple times in a single execution. To correctly cover
that case in our fault model, we keep a counter variable for
a specific instruction that increments every time the binary
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push  %r12
push  %rbp
xor   %ecx,%ecx
...

Correct trace

incorrect trace

diff
addr, inst

 +                     
 +                     
 -                     
 -                     

Hamming Distances

addr1, addr2, HD=1

Incorrect trace

addr0: call inst
            jmp addr2  
addr1: ...
addr2: ..

Simulation Results

addr1src -> addr1dest
Result: ...
addr2src -> addr2dest
Result: ...

Filtered Results

addrsrc -> addrdest

SIGSTOP

timeout

not
in memory

SIGCONT

in memory

Check
/proc/$pid/mem

addr0: call inst
addr1: ...
addr2: ..

addr0: call inst
addr1: ...
addr2: ..

Figure 6: LeapFrog gadget detection using MFS framework
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Figure 7: Probability of finding a page among N pages
for different k+l values. k+l states the number of targeted
bit offsets in a page.

executes the same instruction. In a single execution of the
original binary, if an instruction is executed N times, we
attempt the fault simulation N + 1 times, until we no
longer see the same instruction in the trace.

5 After the bit flip simulation, MFS continues the
execution of the binary without further faults and observes
the new behavior. The analysis of the new behavior is
not a trivial task. There are several options where we
can observe changes compared to the original execution.
For instance, we can observe changes in the total number
of executed instructions, the number of instructions that
match with the correct input execution trace, the return
code of the program, outputs to standard streams, ports
that are accessed, function calls, authentication results,
etc. The choice of observable depends on the program
under test. In this work, MFS uses the return codes,
standard outputs/errors, and authentications on different
case studies.

6 Once MFS has a list of PC values that potentially
result in misauthentication or bypass with a single-bit flip,
it then evaluates if they are practical to attack from a
timing perspective. In some cases, a single bit flip will
result in the desired behavior in a process but the attack
window of time is too short to effectively attack the target.
Additionally, the attack window needs to be long enough
to allow for noise in the system - as processes will often
take a variable amount of time to execute and get to the
vulnerable area in the code where the PC value is shelved
in the stack. MFS uses process degradation to increase the

viability of LeapFrog gadgets, as slowing down a process
artificially increases the attack window time. Note that
this step is system-specific and it can be affected by the
current processor/memory load. Although it is necessary
to find viable targets in the list for an end-to-end attack,
it does not guarantee that the other targets are not viable
in different system configurations, or different systems.

MFS starts the victim process and then immediately
stops it with a SIGSTOP signal and it checks if the PC
value is currently in the stack of the process. If not,
the process is killed and restarted, and stopped after a
slightly longer period, in a process we call time sweeping.
The challenge is sending a SIGSTOP with the highest
timing precision possible. Different implementations of
signals will yield different timing resolutions. For ex-
ample, Python has a signal library that can be used to
generate signals similar to a bash script, but there is
considerable delay and imprecision in the time it takes
to send a signal.

7.1. Tool Implementation

We used Intel’s dynamic binary instrumentation frame-
work, Pin [38], which allows for process analysis without
altering its core behavior to implement 1 and 4 of
MFS. Using Pin also makes it possible to find LeapFrog
gadgets in binaries that do not have a source code since
it does not require recompiling. In the context of MFS,
Pin’s capabilities are harnessed to monitor the execution
trace of a binary. This integration allows for a thorough
analysis of potential LeapFrog gadgets by observing how
changes in PC values influence program behavior. For
each executed instruction, our tool outputs the virtual
address of the instruction and disassembly of the machine
code. If the instruction is a call instruction, it also outputs
the return address of the call. The return address of the
call is usually the PC value that is pushed onto the stack
before executing the called routine. For every write to
STDOUT and STDERR, the tool forwards a copy of the
buffer to a text file for further analysis. To avoid the effect
of overhead caused by instruction-based instrumentation,
function timings are collected in a separate session on
every function entry and exit.

2 is a simple comparison operation on the correct
and incorrect execution traces implemented with diff
command line tool in Linux.
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3 is implemented in Python. MFS parses the in-
struction traces and computes the Hamming distance be-
tween the return addresses and instruction addresses of
all executed instructions in the correct trace or the list
of addresses we get from 2 . The Hamming distances
are calculated using the native bit_count function in
Python followed by bitwise_xor in numpy library.
The operation is parallelized on multiple cores to speed
up the analysis.

The bit flip simulation part of MFS ( 4 ) is done
using Pin which takes the address pairs and simulates
every fault independently. The faults on PC values are
implemented as direct jumps to the corrupted addresses
by adding jmp addrdest after function returns. Since we
add a direct jump to the target address by injecting a line
of assembly with the Pin tool, it is functionally equivalent
to corrupting the PC value in memory.

5 filters the simulation results depending on the pro-
gram and targeted exploit type. For different types of
exploits, we filter by return code (section 8.4), value in
STDOUT (section 8.2).

6 The last stage of MFS takes the list of PC values
generated from the previous steps and determines which
are practical from a timing perspective. It does this by
sweeping the process in the time domain determining
when it needs to stop the process to find particular PC
values in the stack.

We begin by defining when we want to start our sweep,
and what interval we want to sweep at. For OpenSSL
as an example, we started our sweep at 0ns and had
an interval of 100ns. Generally, the higher the resolution
of the sweep, the longer the simulation takes. However,
a smaller interval increases the likelihood that we will
successfully send a SIGSTOP at a time when the target
PC value is in the stack.

To determine if a PC value is in the stack, we start
the victim process as a non-root user on a sibling core
to a core that we are attacking with SMC to degrade the
performance. For example, in our tests we isolated cores
6 and 14 and triggered SMC events on core 14 while
running the victim process on core 6. Once we have the
process identification number (PID) of the process and
send a SIGSTOP, we use the Linux process interface to
check the stack for the PC value. We do this by looking
at the /proc/[pid]/maps file to determine which
offsets in the victim process’s address space contain the
stack, and then we read from /proc/[pid]/mem at
the offsets determined by /proc/[pid]/maps to find
the PC values. The tool will generate a dictionary of stack
addresses/values for the victim process that we can search
through.

If during a sweep the tool finds the PC value in the
stack, it will simulate a flip by overwriting that value with
the new PC value determined by the previous steps to
verify that the gadget does result in the intended behavior
(privilege escalation, data leak, mis-authentication, etc...).

Generally, if MFS can successfully pass all stages of
filtering with a particular LeapFrog gadget, we believe that
it can be attacked and flipped with Rowhammer to cause
the desired behavior.

8. Experiments

Experiment Setup The experiments are conducted on a
system with Ubuntu 22.04.2 LTS with 6.2.0-37-generic
Linux kernel installed. The system uses an Intel Core
i9-9900K CPU with a Coffee Lake microarchitecture.
We used a dynamic clock frequency instead of a static
clock frequency to improve the practicality of the attack.
End-to-end attack experiments are performed on a single
DIMM Corsair DDR4 DRAM chip with part number
CMU64GX4M4C3200C16 and 16GB capacity. DRAM
row refresh period is kept at 64ms, which is the default
value in most systems. In all the experiments, we used
100s simulation timeout, since the fault simulations rarely
cause infinite loops. We empirically observe that using
the Python signals library, the target process could com-
plete 34M cycles before the attacker can stop it, with a
standard deviation of 2.7M cycles. Alternatively, using a
bash script, the victim process can only complete 18M
cycles before it is stopped, with a standard deviation of
0.3M cycles. There is an order-of-magnitude difference in
precision stopping a process with bash vs. with Python.

8.1. ML Misclassification

In this section, we investigate the potential implica-
tions of instruction skipping in the machine learning do-
main, specifically for decision tree algorithms. A decision
tree is an ML model used to make predictions based
on a series of binary choices, effectively splitting data
into increasingly specific groups. It starts with a single
node, which branches into possible outcomes based on
the features of the data. Each branch represents a decision
pathway, and each node in the pathway represents a test
on a specific attribute. This process continues until a leaf
node is reached, which provides the predicted outcome.
They are widely used in various applications, from fi-
nancial forecasting [37] to medical diagnosis [54] due to
their interpretability, and efficiency for a variety of tasks
such as classification, and feature importance ranking. We
choose a decision tree for proof of concept yet instruction
skipping attacks can be effective in every kind of model
implementation.

Classification algorithms may be vulnerable to the
LeapFrog attack under the threat model that an attacker is
co-located on the server with the victim process running
the model, and the attacker would like to force a particular
output. If the attacker faults the victim process program
counter and forces a jump in the code, the result may be a
misclassification or a forced classification of a particular
output. This attack is different from other Rowhammer
attacks on machine learning models [59] because for this
attack we do not need to know the model weights before
hand, and we consider this a gray box model.

In this experiment, we use a public
implementation[44] as our target. We simulate program
counter flips and observe the effects on the model output.
We follow a similar procedure to previous examples,
where we experiment with a hammering distance of 1, 2,
and 3 and determine the number of successful LeapFrog
gadgets with each of these distances. In Table 1, we can
see various number of LeapFrog candidate gadgets that
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might result in a misclassification. After simulating these
gadgets, we found 23 of the 1363 potential gadgets within
1 hammer distance would result in a misclassification.

Target Size #Inst.exec dHD # Candidates
2 on 2 off

Decision Tree 99KB 38417
1 N/A 1363
2 N/A 8667
3 N/A 32326

TABLE 1: Number of gadget candidates found in decision
tree algorithm with different Hamming distances.

8.2. OpenSSL Encryption Bypass

We analyze openssl command line tool that uses
OpenSSL v1.1.1w for block cipher and stream cipher im-
plementations. For each cipher, we give a simple plaintext
that contains the helloworld string and run encryption
without salt with a simple passphrase. We aim to find
LeapFrog gadgets in the binary that can be exploited for
bypassing encryption steps in the ciphers, revealing the
plaintext.

First, we scan the binary using MFS as described in
section 7. Since we do not aim for any authentication
bypass in this scenario, and the execution traces are
deterministic for fixed inputs, step 2 is not applicable.
Instead, in step 3 , we compare the return addresses in
a single trace against all the instruction addresses in the
same trace to look for targets with dHD = 1. This means
that ultimately, for each return address, we test 12 different
jumps, a trial for each bit in the page offset. Table 2 shows
the total number of gadgets for each hammer distance,
with a hammer distance of 1 having a total of 2700
candidates.

We scanned the binary with 135 different ciphers
available in OpenSSL. Most of the time the binary was not
affected by the simulated bit flip and correctly produced
the ciphertext.

Target Size #Inst.exec dHD # Candidates
2 on 2 off

OpenSSL 818KB 49431
1 N/A 2700
2 N/A 20208
3 N/A 70475

TABLE 2: Number of gadget candidates found by MFS
in for fault models with different Hamming distances. We
ran OpenSSL with aria-128-cbc cipher.

Figure 10 illustrates one of the LeapFrog gad-
gets found in the openssl command line tool. When
we corrupt a single bit in 0x55555559c4c5, the
return address of opt_cipher function, to make it
0x55555559c0d5, the function returns to the cor-
rupted return address, skipping three instructions in
between. Similarly, another single-bit corruption to
(0x55555559c0c5) causes the function to return to an
earlier point in the program. We verified that both of these
bit flips cause the binary to skip the whole encryption
and instead output the plaintext. Similarly, MFS detected
LeapFrog gadgets that are used in 36 ciphers includ-
ing block ciphers and stream ciphers. The ciphers with
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Figure 8: aes-256-ctr simulation results
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Figure 9: aria-256-ctr simulation results. Plaintext
helloworld is revealed three times.

LeapFrog gadgets that revealed full or partial plaintext
are listed in Table 3. Figure 8 and 9 summarize the
simulation results for aes-256-ctr and aria-256-
ctr respectively.

Even with ASLR enabled, these gadgets are repro-
ducible because ASLR does not randomize the last 12
bits of the code space (the page offset). We only simulated
faults in the last 12 bits (which should be the same across
all x86 machines the process is compiled for), thus, the
LeapFrog gadgets should work across machines without
the need for rescanning.

8.3. Post-Quantum Cryptography Schemes

NIST announced the standards for Post-Quantum
Cryptography (PQC) in FIPS 204 [48], and FIPS 205 [49].
These standards are used for digital signatures to pro-

Recovered Cipher

helloworld aria-128-cbc, aria-128-cfb,aria-128-cfb1
aria-128-cfb8, aria-128-ctr, aria-128-ofb

aria192, aria-192-cbc, aria-192-cfb
aria-192-cfb1, aria-192-cfb8, aria-192-ctr

aria-192-ofb, aria256, aria-256-cbc
aria-256-cfb, aria-256-cfb1, aria-256-cfb8

aria-256-ctr, aria-256-ofb, bf-ofb
rc2-ofb, rc4, rc4-40

hellowor... bf-cfb, rc2-cfb

hdlmowor... idea-cfb, idea-ofb

oworhell... bf, bf-cbc, bf-ecb, blowfish

?rl#a?gy?... chacha20, des-ede3-ofb, des-ede-ofb, des-ofb

TABLE 3: 36 ciphers implemented in OpenSSL that are
vulnerable to LeapFrog attack. Each given cipher reveals
the plaintext fully or partially in the ciphertext due to
skipped encryption steps.
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<enc_main>:
...
   0x55555559c0c0:  call   <opt_next>
   0x55555559c0c5:  test   %eax,%eax                  
   0x55555559c0c7:  je     <enc_main+0x1a0>
   0x55555559c0c9:  cmp    $0x1d,%eax
   0x55555559c0cc:  jg     <enc_main+0x178>
...
   0x55555559c4b0:  call   <opt_unknown>
   0x55555559c4b5:  lea    0x90(%rsp),%rsi
   0x55555559c4bd:  mov    %rax,%rdi
   0x55555559c4c0:  call   <opt_cipher>               
   0x55555559c4c5:  test   %eax,%eax                  
   0x55555559c4c7:  je     483a8 <enc_main+0x438>
   0x55555559c4cd:  mov    0x90(%rsp),%rbp
   0x55555559c4d5:  jmp    <enc_main+0x150>           
   0x55555559c4da:  nopw   0x0(%rax,%rax,1)
   0x55555559c4e0:  mov    0x84(%rsp),%r9d
...

Figure 10: LeapFrog gadget in OpenSSL command line
tool resulting in encryption bypass in aria-128-cbc block
cipher. The PC value that fault is injected into, addrsrc,
is highlighted in blue . The new value after the fault
injected,addrdest, is highlighted in red . The fault is in-
jected during the execution of the function call highlighted
in green .

tect against quantum attacks. We use Open Quantum
Safe (liboqs version 0.11.1-dev) library [55],
an open source library for PQC algorithms, to find
LEAPFROG gadgets on FIPS standards using MFS tool.

One of the algorithms selected by NIST for stan-
dardization is CRYSTALS-Dilithium, which serves as a
digital signature scheme providing post-quantum security
guarantees. Dilithium relies on the hardness of struc-
tured lattice problems, such as the Learning With Er-
rors (LWE) problem, which is believed to be intractable
for quantum computers. Another prominent algorithm is
FALCON, which offers smaller key sizes and signatures
by employing the NTRU lattice, making it a competitive
choice for constrained environments. Our analysis of these
algorithms reveals that, despite their robust design against
quantum attacks, they still exhibit vulnerabilities at the im-
plementation level, susceptible to hardware fault injections
like the LEAPFROG used in Rowhammer-based exploits.

In digital signature schemes, we find gadgets that
produce several failure modes in the Open Quantum Safe
Library. The most critical error is a bypass of the signature
verification. Note, that while we experimented with Post-
Quantum encryption schemes, theoretically LeapFrog gad-
gets should work on classical encryption schemes as well.

The “Magic Number Mismatch” column in Table
4 highlights instances where the injected fault corrupts
memory regions containing predefined magic numbers
used for integrity checks. This mismatch signifies unin-
tended memory corruption caused by the LeapFrog gad-
get, which can lead to unpredictable behavior or system
crashes. According to Table 4, all signature schemes also
contain gadgets for this failure mode, with Dilithium 3
containing the most number of LeapFrog gadgets.

Failures during key generation (“Key Gen. Fail”),
signature generation (“Sig. Gen. Fail”), and signature

verification (“Sig. Verif. Fail”) were also identified. Such
failures can be exploited to disrupt normal cryptographic
operations, resulting in denial-of-service (DoS) attacks or
weakening cryptographic strength by producing invalid or
insecure keys and signatures. All schemes contain this
type of gadget.

The “Incorrect Verification” column denotes scenarios
where invalid signatures are erroneously accepted as valid.
This occurs when a LeapFrog gadget alters the control
flow of the verification routine, enabling attackers to
perform impersonation attacks by forging signatures that
bypass standard validation checks.

Lastly, the “Verification Bypass” column in Table 4
highlights instances where the signature verification rou-
tine can be entirely circumvented using LeapFrog gadgets.
Similar to the TLS attack scenario described in Sec-
tion 8.4, this allows an attacker to craft an invalid signature
and have it accepted as valid at the client’s end. By
flipping bits in the Program Counter (PC) values using the
LEAPFROG within the client’s memory space, the attacker
effectively bypasses the signature verification routine. This
vulnerability poses a significant security risk by enabling
impersonation attacks and facilitating unauthorized access
or actions within the system. Notably, Dilithium3 exhibits
the highest number of LeapFrog gadgets for this threat,
indicating a greater susceptibility to such attacks. An
example of such a LeapFrog gadget in Dilithium is seen
in Figure 11.

We find LEAPFROG gadgets on FIPS 204 standard,
also on other PQC digital signatures schemes, FAL-
CON [20], MAYO [7], and CROSS [6].

Table 4 summarizes LEAPFROG gadgets found in
the liboqs library for different PQC digital signature
schemes. Compared to Dilithium, ML-DSA, the imple-
mentation of the FIPS 204 standard, had fewer LEAPFROG
gadgets, suggesting that its implementation might be more
resilient to the specific fault attacks we conducted. How-
ever, this does not imply immunity, as the gadgets found
were still capable of bypassing critical functions. The
relatively lower number of vulnerabilities in ML-DSA
could also be attributed to its simpler structure, which
reduces the surface area for potential control flow subver-
sion attacks.

We also evaluated SPHINCS+, a hash-based signa-
ture scheme standardized in FIPS 205. SPHINCS+ offers
a different security foundation, relying on the hardness
of hash-based constructions rather than lattice problems.
While this scheme is robust against certain classes of
attacks, our analysis uncovered several LeapFrog gadgets
capable of bypassing signature verification. This suggests
that even though the algorithm itself is designed to with-
stand quantum and classical cryptanalytic attacks, practi-
cal vulnerabilities arise due to implementation flaws that
allow Rowhammer-based attacks to alter execution paths.
Interestingly, the number of LEAPFROG gadgets identified
in SPHINCS+ varied significantly based on its parameter
set, with some configurations being more resilient than
others. This highlights the importance of parameter selec-
tion in mitigating the risk of physical attacks.

SPHINCS+ has more gadgets compared to the
FALCON-1024 configuration, but in some configurations,
it has fewer gadgets than FALCON-512, another selected
algorithm that is not standardized. Overall, our findings
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Scheme # Instructions Candidate
Gadgets

Magic Number
Mismatch

Key Gen.
Fail

Sig. Gen.
Fail

Sig. Verif.
Fail

Incorrect
Verification

Verification
Bypass

Dilithium2 43474 17472 18 3 11 294 5 8
Dilithium3 42800 25010 36 6 22 654 10 20
Dilithium5 44171 18591 12 8 14 355 4 13
Falcon-512 60647 18641 18 16 50 106 4 16
Falcon-1024 60794 9360 8 8 22 40 2 7
Falcon-padded-512 60678 9396 8 9 21 41 2 6
Falcon-padded-1024 61128 9456 8 6 19 42 2 9
MAYO-1 43542 6924 8 3 4 33 2 8
MAYO-2 43533 6984 8 4 5 32 2 8
MAYO-3 46823 6996 8 3 4 35 2 6
MAYO-5 44302 6528 6 4 3 34 3 11
ML-DSA-44 43668 17616 0 3 1 21 1 5
ML-DSA-44-ipd 43338 8820 9 3 4 172 3 8
SPHINCS+-SHA2-128f 37109 8052 8 3 5 112 6 9
SPHINCS+-SHA2-128s 37379 8052 8 3 8 109 5 7
SPHINCS+-SHA2-192f 42143 8460 7 3 9 113 5 7
SPHINCS+-SHA2-192s 42535 8484 7 3 10 109 4 6
SPHINCS+-SHA2-256f 42437 8532 8 3 4 94 3 8
SPHINCS+-SHA2-256s 42758 8556 8 3 6 98 3 7
cross-rsdp-128-balanced 44024 10032 9 4 4 209 2 8

TABLE 4: Results from scans on the liboqs library, showing various issues encountered during signature operations
for each digital signature scheme, along with the total number of assembly executions and candidate gadgets.

<OQS_randombytes_system>:
...
   0x5555555586e1:  mov    %r12,%rdi
   0x5555555586e4:  mov    %rax,%rbp
   0x5555555586e7   callq  <fread@plt>           
   0x5555555586ec:  cmp    %rax,%rbx             
   0x5555555586ef:  ja   <OQS_randombytes_system>

...

Figure 11: LeapFrog gadget detected in liboqs binary
for Dilithium PQC Digital Signature Scheme. The PC
value that fault is injected into, addrsrc, is highlighted
in blue . The new value after the fault injected, addrdest,
is highlighted in red . The fault is injected during the
execution of the function call highlighted in green .

Target Size #Inst.exec dHD # Candidates
2 on 2 off

TLS 29KB 5328007
1 315 2493
2 2240 14413
3 21841 67421

TABLE 5: Number of gadget candidates found in TLS
scenario for fault models with different Hamming dis-
tances.

indicate that there are generally more LEAPFROG gadgets
that enable bypassing signature verification compared to
those that can falsely verify an invalid signature, indicating
higher feasibility for DoS attacks with lower security
impact compared to impersonation attacks.

8.4. TLS Handshake

In a full end-to-end attack example, we illustrate the
potency of the attack by applying it within a client/server

authentication framework, specifically using OpenSSL for
signature verification. Here, we consider a scenario where
the attacker shares a physical computing space with the
client. The goal of the attacker is to manipulate the
client’s signature verification mechanism, causing it to
erroneously validate a corrupted signature as genuine. This
manipulation forms part of a broader man-in-the-middle
strategy, aimed at deceiving the client into believing they
are securely connected to the intended server.

In the standard communication flow, the client initiates
contact with the server by dispatching a ClientHello
message. The server replies with a ServerHello mes-
sage, which carries its public key and a digital signature
of the handshake process. The client’s role is then to
authenticate this signature using the server’s public key.
Under normal circumstances, a verified signature would
indicate a secure channel, prompting the client to trans-
mit sensitive data to the server. However, in our attack
scenario, the attacker strategically alters the signature
verification process at the client’s end. By inducing a
single-bit error during this process, the client is misled
into accepting a fraudulent signature as valid. As a result,
the client erroneously trusts the communication channel
and proceeds to send sensitive information to the attacker.

Figure 12 illustrates a standard interaction where the
client establishes a connection with the server, sends a
request, and then receives a server-signed message, en-
abling server authentication. A critical aspect to note is
the client’s susceptibility to a Rowhammer attack while it
awaits the server’s response. This waiting period, which
can last several milliseconds, is primarily dictated by the
server’s response time. During this interval, an attacker has
the opportunity to exploit the Rowhammer vulnerability
by targeting the client’s memory.

We first profile the target memory to determine where
the client places the PC value in recently deallocated
pages. We use a process we call baiting [50] where
we allocate a series of pages as the attacker. Then, we
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Figure 12: TLS Handshake: The client attempts to au-
thenticate the server, and a colocated rowhammer attacker
flips the PC value causing an instruction skip resulting in
a misauthentication - this is an end-to-end attack
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Figure 13: Probability distribution of bait page numbers.

deallocate the flippy page, forcing the victim process to
use recently-released flippy locations, where the PC values
are stored. You can see our results in Figure 13 where we
see that releasing 29 pages results in nearly a 30% chance
of a PC value being stored in the next page released
(which would be the flippy page).

We scan the client binary using MFS while the server
is using the correct and incorrect private key. With step 2

on, we found 315 unique gadget candidates with dH = 1.
When the server uses the correct key, the client binary
terminates with return code 0, and when the server uses an
incorrect key, the client returns with code 1. In step 5 , we
look for PC corruptions that cause the client to return with
value 0, meaning it incorrectly authenticates the server.
After the simulation, we found that one of the candidates
was a LeapFrog gadget that caused false authentication of
the malicious server with an incorrect key.

Then, we scan the client with step 2 off. With this
mode, MFS detected 2493 gadget candidates with dH = 1.
After the simulation steps, we verified that 21 of those
candidates were LeapFrog gadgets that caused the client to
return with 0, including the one found earlier. The number
of candidates for different Hamming distance values is
given in Table 5.

The total time for the end-to-end attack to induce a
successful misauthentication of the TLS handshake was
12 hours and 25 minutes, as seen in Table 6. This time
included profiling the system for the proper flippy pages
with the correct offset, meaning the actual online time
was around 2 hours. The experiment found a total of 1647
unique flippy pages, and over the course of the 2 hours of
online attacking, we saw 2206 attacks where the program

counter was baited into the correct page we were attacking
before it flipped.

Category Result

Total Time 12 hrs 25 mins
Online Time 1 hr 54 mins
Total Flippy Pages 1647
Total Attacks w/ Correct # of Bait pages 2206

TABLE 6: Results from the end-to-end attack on code
using OpenSSL client/server signature verification with
LeapFrog gadget

9. Countermeasures

Rowhammer Resistant Hardware. Increasing the
DRAM refresh rate is a commonly cited countermeasure
to prevent Rowhammer attacks. Standard DRAM refresh
is 64ms, meaning that a Rowhammer attack has 64ms
to flip a bit before the row refreshes. Thus, a faster
refresh rate will result in a shorter time window for the
Rowhammer attack to be performed and should result
in fewer flips. This is not an ideal solution, however,
because a faster refresh rate will lead to worse power
usage and performance overall. Alternative methods such
as probabilistic row refresh [63] and parallel row refresh
[66] are not available in consumer systems. Additionally,
upgrading hardware to newer DDR5 technology has also
proven to be ineffective [29].

A novel countermeasure against Rowhammer attacks
is the Randomized Row-Swap (RRS) method [52]. This
approach fundamentally disrupts the spatial connection
between aggressor and victim DRAM rows, thereby offer-
ing a robust defense against complex Rowhammer access
patterns, including those not mitigated by victim-focused
methods like the Half-Double attack. RRS operates by
periodically swapping aggressor rows with randomly se-
lected rows within the DRAM memory, limiting the po-
tential damage to any single locality. While RRS can be
implemented in conjunction with any tracking mechanism,
its effectiveness has been demonstrated when paired with
a Misra-Gries tracker, targeting a Row Hammer Threshold
of 4.8K activations, akin to state-of-the-art attacks.

Initial beliefs held that the Error Correcting Code
(ECC) would serve as an effective defense against
Rowhammer attacks. However, subsequent research has
shown that ECC, despite its prevalence in server envi-
ronments, falls short of a comprehensive solution. This
inadequacy primarily arises due to ECC’s vulnerability to
scenarios involving triple bit flips, a phenomenon well-
documented in the literature [15]. Additionally, ECC,
while standard in server-grade hardware, is typically ab-
sent in consumer-grade DRAM systems.

Adding nops To Code. A mitigation against the
LeapFrog attack specifically would be patching the source
code or binary such that it is no longer vulnerable. Given
the single-bit flip requirement of Rowhammer on the PC
values, adding enough nops within the LEAPFROG gadget
to prevent instruction skips that only require a single-bit
flip would potentially mitigate the attack. Adding nop
instructions to source code is not trivial when the com-
piler optimizations are enabled since the compiler may

Approved for Public Release; Distribution Unlimited. Public Release Case Number 24-3133 - 12



reorder the critical parts in a different way, which makes
the patch ineffective. A mitigation tool that adds nops
to binary itself may overcome the compiler effect. Yet,
adding new instructions to a binary will result in a change
in the address of all the following instructions, which may
introduce new LEAPFROG gadgets. Therefore, the patched
binary needs to be re-evaluated if the new version still
has gadgets. Although a LeapFrog-aware compiler may
potentially generate a LEAPFROG proof binary, we claim
it is not a sound and reliable approach.

Adding Redundancy to the Control Flow. Since
LeapFrog gadgets are hard to mitigate in the source code
and binary manually, we need a generic mitigation that
can be implemented at the compiler level. The main
target in LeapFrog is the program counter values that are
temporarily pushed into the stack. Pushing multiple copies
of the program counter to the stack and making sure the
ultimate decision to return to an address is made on the
combination of these copies would potentially make the
attack impractical.

10. Conclusion

In this work, we introduced LEAPFROG, a specific
type of Rowhammer exploit that directly targets the
control flow of programs by manipulating the Program
Counter stored in the stack. This novel approach marks
a significant shift in the understanding of Rowhammer
threats, moving beyond traditional data integrity attacks
to those that can alter program execution. Our successful
demonstration of this attack in an OpenSSL TLS hand-
shake scenario highlights its practical effectiveness and
potential impact on widely used security protocols.

Furthermore, we proposed a systematic approach to
identify LeapFrog gadgets in real-world software. Using
our MFS analysis tool, we scanned multiple OpenSSL
ciphers, Open Quantum Safe signature schemes, and ma-
chine learning classification algorithms and quantified
the number of LeapFrog gadgets in this software. Even
though the identification of vulnerable software is rela-
tively straightforward thanks to our detection tool, mit-
igation of LEAPFROG is not a trivial task since it is
not transparent to the developers on a source code level.
Instead, dedicated Rowhammer-resistant DRAM hardware
or Rowhammer-aware compiler tools will be required to
prevent LeapFrog attacks.

11. Disclaimer

Andrew Adiletta’s affiliation with The MITRE Cor-
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